15 research outputs found

    Material evaluation and structural monitoring of early-age masonry structures

    Get PDF
    During the initial construction period, “early-age” masonry walls are susceptible to lateral loads induced by wind or earthquake, which may result in damages or catastrophic failures. To mitigate such consequences at construction sites, temporary bracings are adopted to provide lateral support to masonry walls until they are matured enough to serve as the inherent lateral system of the structure. However, current temporary bracing guidelines provide oversimplified design due to the lack of available information on the material properties of early-age masonry. Moreover, there are no existing techniques for monitoring masonry walls to detect cracks due to construction activities. This thesis presents innovative techniques for the structural health monitoring of early-age masonry structures at construction sites. The stress-strain behavior of early-age masonry structures that have been cured for 3 to 72 hours was estimated through a detailed uniaxial tensile testing program. A 3D microscopic numerical model with cohesion-based interaction surfaces was developed to accurately estimate the tensile behavior and failure patterns of early-age masonry assemblages. A novel hybrid image processing and deep learning algorithm are then proposed for the efficient crack detection in masonry structures at the construction site. Finally, a general discussion on the results, contributions, and future research are provided

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    LiDAR-Based Structural Health Monitoring: Applications in Civil Infrastructure Systems

    No full text
    As innovative technologies emerge, extensive research has been undertaken to develop new structural health monitoring procedures. The current methods, involving on-site visual inspections, have proven to be costly, time-consuming, labor-intensive, and highly subjective for assessing the safety and integrity of civil infrastructures. Mobile and stationary LiDAR (Light Detection and Ranging) devices have significant potential for damage detection, as the scans provide detailed geometric information about the structures being evaluated. This paper reviews the recent developments for LiDAR-based structural health monitoring, in particular, for detecting cracks, deformation, defects, or changes to structures over time. In this regard, mobile laser scanning (MLS) and terrestrial laser scanning (TLS), specific to structural health monitoring, were reviewed for a wide range of civil infrastructure systems, including bridges, roads and pavements, tunnels and arch structures, post-disaster reconnaissance, historical and heritage structures, roofs, and retaining walls. Finally, the existing limitations and future research directions of LiDAR technology for structural health monitoring are discussed in detail

    Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information

    No full text
    The deterioration of infrastructure’s health has become more predominant on a global scale during the 21st century. Aging infrastructure as well as those structures damaged by natural disasters have prompted the research community to improve state-of-the-art methodologies for conducting Structural Health Monitoring (SHM). The necessity for efficient SHM arises from the hazards damaged infrastructure imposes, often resulting in structural collapse, leading to economic loss and human fatalities. Furthermore, day-to-day operations in these affected areas are limited until an inspection is performed to assess the level of damage experienced by the structure and the required rehabilitation determined. However, human-based inspections are often labor-intensive, inefficient, subjective, and restricted to accessible site locations, which ultimately negatively impact our ability to collect large amounts of data from inspection sites. Though Deep-Learning (DL) methods have been heavily explored in the past decade to rectify the limitations of traditional methods and automate structural inspection, data scarcity continues to remain prevalent within the field of SHM. The absence of sufficiently large, balanced, and generalized databases to train DL-based models often results in inaccurate and biased damage predictions. Recently, Generative Adversarial Networks (GANs) have received attention from the SHM community as a data augmentation tool by which a training dataset can be expanded to improve the damage classification. However, there are no existing studies within the SHM field which investigate the performance of DL-based multiclass damage identification using synthetic data generated from GANs. Therefore, this paper investigates the performance of a convolutional neural network architecture using synthetic images generated from a GAN for multiclass damage detection of concrete surfaces. Through this study, it was determined the average classification performance of the proposed CNN on hybrid datasets decreased by 10.6% and 7.4% for validation and testing datasets when compared to the same model trained entirely on real samples. Moreover, each model’s performance decreased on average by 1.6% when comparing a singular model trained with real samples and the same model trained with both real and synthetic samples for a given training configuration. The correlation between classification accuracy and the amount and diversity of synthetic data used for data augmentation is quantified and the effect of using limited data to train existing GAN architectures is investigated. It was observed that the diversity of the samples decreases and correlation increases with the increase in the number of synthetic samples

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease

    Mature B-Cell Neoplasms

    No full text
    corecore